Skip to main content
Log in

Effects of structural marsh management and salinity on invertebrate prey of waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Aquatic invertebrates are important food resources for wintering waterbirds, and prey selection generally is limited by prey size. Aquatic invertebrate communities are influenced by sediments and hydrologic characteristics of wetlands, which were affected by structural marsh management (levees, water-control structures and impoundments; SMM) and salinity on the Gulf Coast Chenier Plain of North America. Based on previous research, we tested general predictions that SMM reduces biomass of infaunal invertebrates and increases that of epifaunal invertebrates and those that tolerate low levels of dissolved oxygen (O2) and salinity. We also tested the general prediction that invertebrate biomass in freshwater, oligohaline, and mesohaline marshes are similar, except for taxa adapted to specific ranges of salinity. Finally, we investigated relationships among invertebrate biomass and sizes, sediment and hydrologic variables, and marsh types. Accordingly, we measured biomass of common invertebrate by three size classes (63 to 199 μm, 200 to 999 μm, and ≥1000 μm), sediment variables (carbon content, C:N ratio, hardness, particle size, and O2 penetration), and hydrologic variables (salinity, water depth, temperature, O2, and turbidity) in ponds of impounded freshwater (IF), oligohaline (IO), mesohaline (IM), and unimpounded mesohaline (UM) marshes during winters 1997–1998 to 1999–2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana, USA. As predicted, ana priori multivariate analysis of variance (MANOVA) contrast indicated that biomass of an infaunal class of invertebrates (Nematoda, 63 to 199 μm) was greater in UM marsh ponds than in those of IM marshes, and biomass of an epifaunal class of invertebrates (Ostracoda, 200 to 999 μm) was greater in IM marsh ponds than in those of UM marshes. The observed reduction in Nematoda due to SMM also was consistent with the prediction that SMM reduces invertebrates that do not tolerate low salinity. Furthermore, as predicted, ana priori MANOVA contrast indicated that biomass of a single invertebrate class adapted to low salinity (Oligochaeta, 200 to 999 μm) was greater in ponds of IF marshes than in those of IO and IM marshes. A canonical correspondence analysis indicated that variation in salinity and O2 penetration best explained differences among sites that maximized biomass of the common invertebrate classes. Salinity was positively correlated with the silt-clay fraction, O2, and O2 penetration, and negatively correlated with water depth, sediment hardness, carbon, and C:N. Nematoda, Foraminifera, and Copepoda generally were associated with UM marsh ponds and high salinity, whereas other invertebrate classes were distributed among impounded marsh ponds and associated with lower salinity. Our results suggest that SMM and salinity have relatively small effects on invertebrate prey of wintering waterbirds in marsh ponds because they affect biomass of Nematoda and Oligochaeta, and few waterbirds consume these invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Afton, A. D., R. H. Hier, and S. L. Paulus. 1991. Lesser scaup diets during migration and winter in the Mississippi flyway. Canadian Journal of Zoology 69:328–333.

    Article  Google Scholar 

  • Aladin, N. V. and W. T. W. Potts. 1996. The osmoregulatory capacity of the Ostracoda. Journal of Comparative Physiology B 166:215–222.

    Article  Google Scholar 

  • Baker, M. C. 1979. Morphological correlates of habitat selection in a community of shorebirds (Charadriiformes). Oikos 33:121–126.

    Article  Google Scholar 

  • Batzer, D. P., M. McGee, V. H. Resh, and R. R. Smith. 1993. Characteristics of invertebrates consumed by Mallards and prey response to wetland flooding schedules. Wetlands 13:41–49.

    Google Scholar 

  • Batzer, D. P. and S. A. Wissinger. 1996. Ecology of insect communities in nontidal wetlands. Annual Review of Entomology 41:75–100.

    Article  CAS  PubMed  Google Scholar 

  • Benke, A. C. 1984. Secondary production of aquatic insects. p. 289–322.In V. H. Resh and D. M. Rosenberg (eds.) The Ecology of Aquatic Insects Praeger, New York, NY, USA.

    Google Scholar 

  • Boldue, F. 2002. Effects of structural marsh management and salinity on sediments, hydrology, invertebrates, and waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain. Ph. D. Dissertation. Louisiana State University, LA http://etd.lsu.edu:8085/docs/available/etd-0708102-140449/

    Google Scholar 

  • Bolduc, F. and A. D. Afton. In press. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: effects of structural marsh management and salinity. Marine Ecology Progress Series.

  • Buchanan, J. B. 1984. Sediment analysis. p. 41–65.In N. A. Holme and A. D. McIntyre (eds.) Methods for the Study of Marine Benthos. Blackwell Scientific Publications, Boston, MA, USA.

    Google Scholar 

  • Bulger, A. J., M. E. Monaco, and M. G. McCormick-Ray. 1993. Biologically-based estuarine salinity zones derived from multivariate analysis. Estuaries 16:311–322.

    Article  Google Scholar 

  • Byrne, J. V., D. O. Leroy, and C. M. Riley. 1959. The Chenier Plain and its stratigraphy, southwest Louisiana. Transactions of the Gulf Coast Association of the Geological. Society 9:237–259.

    Google Scholar 

  • Coull, B. C. 1985. Long-term variability of estuarine meiobenthos: an 11 year study. Marine Ecology Progress Series 24:205–218.

    Article  Google Scholar 

  • Cowan, J. H., R. E. Turner, and D. R. Cahoon. 1988. Marsh management plans in practice: do they work in coastal Louisiana, USA? Environmental Management 12:37–53.

    Article  Google Scholar 

  • Delorme, L. D. 1991. Ostracoda. p. 691–722.In J. H. Thorp, and A. P. Covich (eds.) Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York, NY, USA.

    Google Scholar 

  • Edgar, G. J. 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. Journal of Experimental Marine Biology and Ecology 137:195–214.

    Article  Google Scholar 

  • Euliss, N. H., Jr. and G. Grodhaus. 1987. Management of midges and other invertebrates for waterfowl wintering in California. California Fish and Game 73:238–243.

    Google Scholar 

  • Euliss, N. H., Jr. and S. W. Harris. 1987. Feeding ecology of Northern pintails and Green-winged teal wintering in California. Journal of Wildlife Management 51:724–732.

    Article  Google Scholar 

  • Euliss, N. H., Jr., R. L. Jarvis, and D. S. Gilmer. 1991. Feeding ecology of waterfowl wintering on evaporation ponds in California. Condor 93:582–590.

    Article  Google Scholar 

  • Flint, R. W. and R. D. Kalke. 1986. Niche characterization of dominant estuarine benthic species. Estuarine, Coastal and shell Science 22:657–674.

    Article  Google Scholar 

  • Gaston, G. R. 1992. Green-winged teal ingest epibenthic meiofauna. Estuaries 15:227–229.

    Article  Google Scholar 

  • Gosselink, J. G., C. L. Cordes, and J. W. Parsons. 1979. An ecological characterization study of the Chenier Plain coastal ecosystem of Louisiana and Texas. 3 volumes. U. S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, USA.

    Google Scholar 

  • Hartley, J. P., B. Dicks, and W. J. Wolff. 1988. Processing sediment macrofauna samples. p. 131–156.In J. M. Baker, and W. J. Wolff (eds.) Biological Surveys of Estuaries and Coasts. Cambridge University Press, New York, NY, USA.

    Google Scholar 

  • Helmers, D. L. 1992. Shorebird Management Manual. Western Hemisphere Shorebird Reserve Network, Manomet, MA.

    Google Scholar 

  • Ingole, B. S. and A. H. Parulekar. 1998. Role of salinity in structuring the intertidal meiofauna of a tropical estuarine beach: field evidence. Indian Journal of Marine Sciences 27:356–361.

    CAS  Google Scholar 

  • Kadlec, J. A. 1962. Effects of a drawdown on a waterfowl impoundment. Ecology 43:267–281.

    Article  Google Scholar 

  • Kooloos, J. G. M., A. R. Kraaijeveld, G. E. J. Langenbach, and G. A. Zweers. 1989. Comparative mechanics of filter feeding inAnas platyrhynchos, Anas clypeata, andAythya fuligula (Aves, Anseriformes). Zoomorphology 108:269–290.

    Article  Google Scholar 

  • Kneib, R. T. 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions. Estuaries 7:392–412.

    Article  Google Scholar 

  • Krapu, G. L., and K. J. Reinecke. 1992. Foraging ecology and nutrition. p. 1–29.In B. D. J. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, and G. L. Krapu (eds.) Ecology and Management of Breeding Waterfowl. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Little, C. 2000. The Biology of Soft Shores and Estuaries. Oxford University Press, Oxford, New York, NY, USA.

    Google Scholar 

  • Martin, R. P. and R. B. Hamilton. 1985. Wading bird predation in crawfish ponds. Louisiana Agriculture 28:3–5.

    Google Scholar 

  • Michot, T. C. 1996. Marsh loss in coastal Louisiana: implications for management of North AmericanAnatidae. Gibier Faune Sauvage, Game Wildlife 13:941–957.

    Google Scholar 

  • Mikuska, T., J. A. Kushlan, and S. Hartley. 1998. Key areas for wintering North American herons. Colonial Waterbirds 21:125–134.

    Article  Google Scholar 

  • Minshall, G. W. 1984. Aquatic insect-substratum relationships. p. 358–400.In V. H. Resh and D. M. Rosenberg (eds.) The Ecology of Aquatic Insects. Praeger, New York, NY, USA.

    Google Scholar 

  • Moens, T. and M. Vinex. 2000. Temperature, salinity and food thresholds in two brackish-water bacterivorous nematode species: assessing niches from food absorption and respiration experiments. Journal of Experimental Biology and Ecology 243:137–154.

    Article  Google Scholar 

  • Montagna, P. A. and R. D. Kalke. 1992. The effect of freshwater inflow on meiofaunal and macrofaunal populations in the Guadalupe and Nucces Estuaries, Texas. Estuaries 15:307–326.

    Article  Google Scholar 

  • Moodley, L., G. Chen, C. Heip, and M. Vinex. 2000. Vertical distribution of meiofauna in sediments from contrasting sites in the Adriatic Sea: clues to the role of abiotic versus biotic control. Ophelia 53:203–212.

    Google Scholar 

  • Murkin, H. R. and L. C. M. Ross. 2000. Invertebrates in prairie wetlands. p. 201–248.In H. R. Murkin, A. G. van der Valk, and W. R. Clark (eds.) Prairie Wetland Ecology. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Nudds, T. D. and J. N. Bowlby. 1984. Predator-prey size relationships in North American dabbling ducks. Canadian Journal of Zoology 62:2002–2008.

    Article  Google Scholar 

  • Perkins, E. J. 1974. The Biology of Estuaries and Coastal Waters. Academic Press, New York, NY, USA.

    Google Scholar 

  • Pöysä, H. 1983. Morphology-mediated niche organization in a guild of dabbling ducks. Ornis Scandinavica 14:317–326.

    Article  Google Scholar 

  • Reger, S. J. 1982. Rapid and effective processing of macroinvertebrate samples. Journal of Freshwater Ecology 1:451–465.

    Google Scholar 

  • Rhoads, D. C. 1974. Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology Annual Review 12:263–300.

    CAS  Google Scholar 

  • Robinson, G. G. C., S. E. Gurney, and L. G. Goldsborough. 2000. Algae in prairie wetlands. p. 163–200.In H. R. Murkin, A. G. van der Valk, and W. R. Clark (eds.) Prairie Wetland Ecology. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Safran, R. J., C. R. Isola, M. A. Colwell, and O. E. Williams. 1997. Benthic invertebrates at foraging locations of nine waterbird species in managed wetlands of the northern San Joaquin Valley, California. Wetlands 17:407–415.

    Article  Google Scholar 

  • SAS Institute, Inc 1999. SAS/STAT user's guide, version 8.0. SAS Institute, Inc., Cary, NC, USA.

    Google Scholar 

  • Skagen, S. K. and H. D. Oman. 1996. Dietary flexibility of shorebirds in the Western Hemisphere. Canadian Field-Naturalist 110: 419–444.

    Google Scholar 

  • Sutherland, T. F., P. C. Shepherd, and R. W. Elner. 2000. Predation on meiofaunal and macrofaunal invertebrates by Western sandpiper (Caladris mauri): evidence for dual foraging modes. Marine Biology 137:983–993.

    Article  Google Scholar 

  • Tabachnick, G. G. and L. S. Fidell. 1989. Using Multivariate Statisties. Harper Collins, New York, NY, USA.

    Google Scholar 

  • ter Braak, C. J. F. and P. F. M. Verdonschot. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57:255–289.

    Article  Google Scholar 

  • Thompson, J. D., B. J. Sheffer, and G. A. Baldassarre. 1992. Food habits of selected dabbling ducks wintering in Yucatan, Mexico. Journal of Wildlife Management 56:740–744.

    Article  Google Scholar 

  • Thorp, J. H. and E. A. Bergey. 1981. Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators. Ecology 62:365–375.

    Article  Google Scholar 

  • Tremblay, S. and R. Couture. 1986. Morphologie bucco-linguale d'une guilde de canards barboteurs. Canadian Journal of Zoology 64:2176–2180.

    Google Scholar 

  • Twedt, D. J., C. O. Nelms, V. E. Rettig, and S. R. Aycock. 1998. Shorebird use of managed wetlands in the Mississippi Alluvial Valley. American Midland Naturalist 140:140–152.

    Article  Google Scholar 

  • Visser, J. M., C. E. Sasser, R. G. Linscombe, and R. H. Chabreck. 2000. Marsh vegetation types of the Chenier Plain, Louisiana, USA. Estuaries 23:318–327.

    Article  Google Scholar 

  • Weber, L. M. and S. M. Haig. 1997. Shorebird-prey interactions in South Carolina coastal soft sediments. Canadian Journal Zoology 75:245–252.

    Article  Google Scholar 

  • Wicker, K. M., D. Davis, and D. Roberts. 1983. Rockefeller state wildlife refuge and game preserve: evaluation of wetlands management techniques. Coastal Management Section, Louisiana Department of Natural Resource, Baton Rouge, LA, USA.

    Google Scholar 

  • Widbom, B. 1984. Determination of average individual dry weights and ash-free weights in different sieve fractions of marine meiofauna. Marine Biology 84:101–108.

    Article  Google Scholar 

  • Yozzo, D. J. and D. E. Smith. 1995. Seasonality, abundance, and microhabitat distribution of meiofauna from a Chickahominy River, Virginia tidal freshwater marsh. Hydrobiologia 310:197–206.

    Article  Google Scholar 

  • Zwarts, L. and J. H. Wanink. 1984. How Oystercatchers and Curlews successively deplete clams. p. 69–83.In P. R. Evans, J. D. Goss-Custard, and W. G. Hale (eds.) Coastal Waders and Wildfowl in Winter. Cambridge University Press, New York, NY, USA.

    Google Scholar 

  • Zwarts, L. and J. H. Wanink. 1991. The macrobenthos fraction accessible to waders may represent marginal prey. Oecologia 87:581–587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolduc, F., Afton, A.D. Effects of structural marsh management and salinity on invertebrate prey of waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain. Wetlands 23, 897–910 (2003). https://doi.org/10.1672/0277-5212(2003)023[0897:EOSMMA]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2003)023[0897:EOSMMA]2.0.CO;2

Key Words

Navigation